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Background: What is vibration energy harvester ?

Low-power electronic devices

for wireless sensing
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If we can use low-power sensor ICs without

battery, various new WSN systems will be

realized !

e.g., motioning the “health” of bridges and

tunnels
Zigbee, RFIF, etc,...

Vibration energy harvester

 Vibration is generated from the traffic on bridges.

 If we can harvest the small electric power

form this vibration, the sensor ICs can work

without any batteries.

 Vibration energy harvester is the device to

produce the power from vibration.

http://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Erimo_Ogon_Tunnel.JPG
http://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Erimo_Ogon_Tunnel.JPG


Electromagnetic Vibration Energy Harvester
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 Electromagnetic vibration energy harvester (VEH) transforms

vibration energy to electric energy through magnetic induction.

Cantilever

beam

Magnets

Coil

ambient vibration

Magnetic flux across the 

coil temporally changes. 

 When ambient vibration is applied to base (coil), the cantilever

is oscillated.

 As a result, electromotive force is induced in the coil.



0

1

2

3

4

5

20 30 40 50 60 70

出
力

(μ
W
)

入力周波数 (Hz)
frequency(Hz)

fr
eq

u
en

cy
(H

z)

Electromagnetic Vibration Energy Harvester

5

 Electromagnetic vibration energy harvester (VEH) transforms

vibration energy to electric energy through magnetic induction.

Cantilever

beam

Magnets

Coil

ambient vibration

 Conventional VEHs produce the electrical energy

through linear spring-damper oscillations.

 The output power is generated only around the

natural frequencies of VEHs.
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 In the real-world, vibration has wide frequency

spectrum.

 The operation bandwidth of VEH must be improved.

Higher output

Broader bandwidth

 In case of zigbee, about 2mW is necessary.

 VEHs must be produce the power from wider frequency range.

We propose a new harvester by

introducing magnetic materials

For real-world application...
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Concepts for improvement of performance
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For Higher output,

 Electro-mechanical coupling can be increased by forming

appropriate magnetic circuits.

＜with magnetic circuit and two magnets pairs＞ ＜ without magnetic circuit ＞
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 The electromotive force is equal to the time derivative of the

magnetic flux across the coil Φ.
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Concepts for improvement of performance
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For Higher output,

For wider bandwidth,

 appropriate magnetic circuits should be designed.

 nonlinear phenomena is used.

＜with magnetic circuit and two magnets pairs＞ ＜ without magnetic circuit ＞
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Our previous work
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 Based on the mentioned concepts, we have developed a

harvester with nonlinear oscillations.[1,2]

 

[1]: T. Sato, H. Igarashi, “A New Wideband Electromagnetic Vibration Energy Harvester with Chaotic Oscillation”, Proc. of 

PowerMEMS2013, pp. 622-626, 2013.

[2]: T.Sato, H. Igarashi, “A Chaotic Vibration Energy Harvester Using Magnetic Material,” submitted to Smart. Mater. Struct.

 A soft-magnetic composite core (SMC core) is introduced to form

a magneticc circuit.



Our previous work
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[1]: T. Sato, H. Igarashi, “A New Wideband Electromagnetic Vibration Energy Harvester with Chaotic Oscillation”, Proc. of 

PowerMEMS2013, pp. 622-626, 2013.

[2]: T.Sato, H. Igarashi, “A Chaotic Vibration Energy Harvester Using Magnetic Material,” submitted to Smart. Mater. Struct.

 The harvester has wide bandwidth.

 The oscillator has a complicated

(chaotic) motion.
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Our previous work
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 Although the harvester has a wide bandwidth, the

maximum voltage is under 0.2VRMS.

 To connect rectifier circuits to the harvester, over 0.2VRMS

is necessary.
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In this work, we enhance this harvester model

to increase the output and bandwidth.



Nonlinear VEH with magnetic cores
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 A harvester with silicon steel sheets is presented.

 The silicon steel sheets form a closed

magnetic circuit to increase the flux

linkage with the coils.

 As a result, electro-mechanical

coupling will be increased.

 

 



Nonlinear VEH with magnetic cores
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 Attraction magnetic force is generated between

magnets and the cores.

 The magnetic force is nonlinear with respect to

displacement, which gives rise to nonlinearity.
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By forming magnetic circuits,

• higher output

• wider bandwidth

would be simultaneously realized.
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Electromotive force
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 The effect of the introduction of the steel iron

sheet is evaluated by FEM.

 It is clear that the silicon steel sheets can

effectively increase electromotive force.
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Potential energy
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 We now consider potential energy of VEH, E.

    ,
2

1 2kXXEXE mag  Emag：magnetic energy

k：spring constant

 It can be found that the potential profile depends on by

k.
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Potential energy
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 When k is large, the VEH system

would be near to linear.
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[*]：R. L. Harne, K. W. Wang, 2013, A review of the recent research on vibration energy harvesting via bistable systems, Smart.

Mater. Struct., vol. 22, no. 2, 023001.

 When setting proper k, bistable potential structure* is realized.

 As for the bistable VEHs, the inertial mass of VEH transits between

two potential wells if the oscillator can overcome the potential barrier

by the vibrations regardless of frequency.

 It has been shown that bistable VEHs can harvest electrical power

under noise excitations.
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 Bistable harvester has three behavior modes

＜mode1＞

Transit two wells regularly. 

interwell oscilaltion

(In general, mode2 is chaotic)

＜mode2＞

Transit two wells irregularly. 

＜mode3＞

Trapped one well.

intrawell oscillation
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Experiments
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 The proposed harvester was manufactured.

 The output power was measured.

37mm

30mm

18mm

Coils and steel irons are inside.

Magnets are inside.

 

Fig. 4. Manufactured Harvester.



Experiments
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 Sinusoidal vibration is applied to the harvester.

37mm

30mm

18mm

Coils and steel irons are inside.

Magnets are inside.

oscilloscope

vibrator

VEH

position

sensor

resistive load

 Load voltage is measured by oscilloscope.

 Aresistive load,460Ω, is connected to the coil.

 The input acceleration is fixed to 1.0G for all the frequencies.



Experiments
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Experimental results: k=2000
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 The maximum output power is obtained at 60Hz.

 The maximum voltage is about 0.7V, which is sufficiently higher than the

threshold of diodes which are included in the rectifiers connected to the

harvester.

 The frequency characteristic is well similar to the linear oscillation.

Fig. 1. Load voltage Fig. 2. Output power
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 The maximum output power is obtained at 40Hz.

 The output is increased with frequency, then drops at about 45Hz.

Fig. 3. Load voltage Fig. 4. Output power

Experimental results: k=1000
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 As expected, when k=2000, the frequency-response is seemed to be

linear.

 When k=1000, the operational bandwidth is not effectively improved.

Fig. 5. Output power

Experimental results
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 In linear system, the resonant frequency is given by

Fig. 5. Output power

Discussion1: when k=2000

m

k
n 

 When k=2000, the natural frequency is about 90Hz.

 However, the measured natural frequency is 60Hz.

Original resonant point: 90Hz
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 The total force acting on the harvester when k=2000 is shown in Fig. 6.

 The initial gradient of the total force is about 900N/m, which can be

assumed to effective spring constant.

 In case of k=900, the resonant point is 60Hz.

Fig. 6. effective total force when k=2000

Effective spring constant when k=2000
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Discussion2: behavior modes when k=1000
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 From the potential energy, when k=1000, the

system has bistable property, by which the

operational bandwidth is improved.

 However, the bandwidth of the harvester is not

improved.

 The time-variations of displacement and

voltage is shown in Fig. 7, which shows that

the harvester has two behavior modes.
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(a): 35Hz

Fig. 7 Time-variations of displacement and voltage.

(b): 50Hz
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 ideal bistable structure

 manufactured harvester

 As mentioned before, the bistable harvester has three

behavior modes.

 However, the manufactured harvester has two modes.



Experimental results
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 The reason why the measured output does not agree with the analysis results

would be due to the manufacturing error.

 Bistable VEH with low potential barrier easily looses the double-well potential

due to manufacturing errors.
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Conclusion
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 For high output and wider bandwidth, a harvester with silicon iron

sheets has been presented.

 The proposed harvester has the closed magnetic circuit which is

formed by the silicon iron sheets.

 When k is large, the frequency response is almost linear.

 When k is appropriately small, the harvester has bistable property

in the ideal case. It has suggested that the bistable property is

disappeared due to manufacturing error.

Future works

 Precise harvester will be manufactured.

 A new harvester model which is robust against 

manufacturing errors will be considered.


