

Novel Topology Optimization Based on On-Off Method and Level Set Approach

Graduate School of Information Science and Technology Hokkaido University

> *Yuki Hidaka Takahiro Sato

Outline of the presentation

- I. Background and purpose
- II. Present method
- **III.** Optimization Results

IV. Conclusions

- Shape optimization plays an important role in the development of electromagnetic devices.
- There are two approaches for shape optimizations, namely, parameter and topology optimizations.

- Shape optimization plays an important role in the development of electromagnetic devices.
- There are two approaches for shape optimizations, namely, parameter and topology optimizations.

Dependence on experience and knowledge of engineers Find novel shape

 In the topology optimization on-off and level-set methods are widely used.

- In the topology optimization on-off and level-set methods are widely used.
- On-Off Method
- Genetic Algorithm (GA) is widely employed for optimization process.
- ✓ Material shapes are expressed as binary pixel images

 We may obtain complicated shape because of huge search spaces.

 In the topology optimization on-off and level-set methods are widely used.

Level set Method

- ✓ Material boundaries are expressed with level set function.
- \checkmark We can have smooth boundaries and non-porous material region.
- This tends to fail into local optima because optimization is conducted based on gradient method.

Purpose

Present Method

First step is the global search.

- GA has good performance for the global search
- One solution is selected

Purpose

Present Method

First step is the global search.

- GA has good performance for the global search
- One solution is selected

Second step is the local search,,,,

- The solution improved by level set method
- Smooth boundaries and nonporous material region

HOKKAIDO UNIVERSITY

Outline of the present method Global Search with GA Generations 0 n Resultant shape is Local Search Based on Level Set approach expressed by the level set function. Steps () n

Global search method - On-Off Method -

• In order to suppress computational time, the micro genetic algorithms (μ GA) is employed for optimization [1].

10

HOKKAIDO UNIVERSITY

• To eliminate high frequency component, we applied the averaging filter for smoothing.

[1]. C. A. Coello and G. T. Pulido, "A micro-genetic algorithm for multiobjective optimization," EMO 2001, LNCS 1003, pp, 126-140, 2001.

Local search method - Level Set Method -

- Material shape is expressed in terms of the level set functions.
- The level set functions are defined on each node.
- The level set function of any point in each element calculates by interpolating.

HOKKAIDO UNIVERSITY

Local search method - Level Set Method -

- Material shape is expressed in terms of the level set functions.
- The level set functions are defined on each node.
- The level set function of any point in each element calculates by • Ω : Material region • Ω : Material region • $\partial\Omega$: Material boundary • x: Point vector in D $(x \in D \setminus \Omega)$ • $(x \in D \setminus \Omega)$ interpolating.

Level-Set method - Distance function -

• Level set function is defined by

$$\phi(\mathbf{x}) = \begin{cases} d(\mathbf{x}, \partial \Omega) & \mathbf{x} \in \Omega \\ 0 & \mathbf{x} \in \partial \Omega \\ -d(\mathbf{x}, \partial \Omega) & \mathbf{x} \notin \Omega \end{cases}$$

where *d* denotes the shortest distance between *x* and boundary.

Level-Set method - In the

 Material shapes are expressed with using level-set function and optimization is conducted by changing them. 14

HOKKAIDO UNIVERSITY

 Level-set function is updated to reduce the value of objective function as follows:

- f : objective function
- n: Iteration of optimization
- V_N : update descent of the level-set functions

Level-Set method - In the

- Material shapes are expressed with using level-set function and optimization is conducted by changing them.
- Level-set function is updated to reduce the value of objective function as follows:

$$\phi_i^{n+1}(\boldsymbol{x}) = \phi_i^n(\boldsymbol{x}) + V_N$$
$$V_N = -\frac{df}{d\phi_i}$$

- f : objective function
- n: Iteration of optimization
- V_N : update descent of the level-set functions

 In order to evaluate the gradient, adjoint variable method is employed.

- Differentiate *f* with respect to level-set function
 - a. Modified objective function defined by (1)
 - \neg b. Differentiation of Eqn. (1) with respect to ϕ_i leads to (2)
 - _ c. Update the level-set function using V_N

- Differentiate *f* with respect to level-set function
 - a. Modified objective function defined by (1)
 - \neg b. Differentiation of Eqn. (1) with respect to ϕ_i leads to (2)
 - _ c. Update the level-set function using V_N

$$\mathbf{a}. \hat{f} = f + \boldsymbol{z}^{T} (\boldsymbol{K} \boldsymbol{A} - \boldsymbol{b}) \quad (1)$$

- Differentiate *f* with respect to level-set function
 - a. Modified objective function defined by (1)
 - \neg b. Differentiation of Eqn. (1) with respect to ϕ_i leads to (2)
 - _ c. Update the level-set function using V_N

a.
$$\underline{\hat{f}} = f + \boldsymbol{z}^T (\boldsymbol{K} \boldsymbol{A} - \boldsymbol{b})$$
 (1)

$$\simeq$$
 f if *A* exactly satisfies *KA*=*b*

- Differentiate *f* with respect to level-set function
 - a. Modified objective function defined by (1)
 - \neg b. Differentiation of Eqn. (1) with respect to ϕ_i leads to (2)
 - _ c. Update the level-set function using V_N

$$\phi_i^{n+1}(\boldsymbol{x}) = \phi_i^n(\boldsymbol{x}) + V_N$$
$$V_N = -\frac{df}{d\phi_i}$$

a.
$$\hat{f} = f + z^{T} (KA - b)$$
 (1)
b. $\frac{d}{d} \frac{f}{d} = \frac{\partial f}{\partial \phi_{i}} + z^{T} \frac{\partial K}{\partial \phi_{i}} A$
 $+ (z^{T} K + \frac{\partial f}{\partial A}) \frac{dA}{d\phi_{i}}$ (2)
In order to avoid
evaluating this

- Differentiate *f* with respect to level-set function
 - a. Modified objective function defined by (1)
 - \neg b. Differentiation of Eqn. (1) with respect to ϕ_i leads to (2)
 - _ c. Update the level-set function using V_N

$$\phi_i^{n+1}(\mathbf{x}) = \phi_i^n(\mathbf{x}) + V_N$$
$$V_N = -\frac{df}{d\phi_i}$$

a.
$$\hat{f} = f + z^{T} (KA - b)$$
 (1)
b. $\frac{d \hat{f}}{d \phi_{i}} = \frac{\partial f}{\partial \phi_{i}} + z^{T} \frac{\partial K}{\partial \phi_{i}} A$
 $+ (z^{T} K + \frac{\partial f}{\partial A}) dA d\phi_{i}$ (2)
 $kz = -\frac{\partial f}{\partial A}^{T}$ (1)

- Differentiate *f* with respect to level-set function
 - a. Modified objective function defined by (1)
 - \neg b. Differentiation of Eqn. (1) with respect to ϕ_i leads to (2)
 - _ c. Update the level-set function using V_N

$$\phi_i^{n+1}(\mathbf{x}) = \phi_i^n(\mathbf{x}) + V_N$$
$$V_N = -\frac{df}{d\phi_i}$$

a.
$$\hat{f} = f + z^{T} (KA - b)$$
 (1)
b. $\frac{d \hat{f}}{d \phi_{i}} = \frac{\partial f}{\partial \phi_{i}} + z^{T} \frac{\partial K}{\partial \phi_{i}} A$
 $+ (z^{T}K + \frac{\partial f}{\partial A}) \frac{dA}{d \phi_{i}}$ (2)
c. $\frac{df}{d \phi} = \frac{d \hat{f}}{d \phi_{i}} = \frac{\partial f}{\partial \phi_{i}} + z^{T} \frac{\partial K}{\partial \phi_{i}} A$

Numerical exmple 1 - IPM-Motor -

- The purpose of this optimization is to maximize the torque average and minimize the torque ripple.
- Shape of the flux barrier in the rotor is optimized.

Numerical exmple 1 - IPM-Motor -

- The purpose of this optimization is to maximize the torque average and minimize the torque ripple.
- Shape of the flux barrier in the rotor is optimized.

IPM-Motor - Analysis conditions -

Optimization results

Optimization results

Torque average (Nm)	5.280	Torque average (Nm)	5.309
Torque ripple	0.184	Torque ripple	0.112
Objective function	-0.806	Objective function	-1.018

Optimization results

Torque average (Nm)	5.280	Torque average (Nm)	5.309
Torque ripple	0.184	Torque ripple	0.112
Objective function	-0.806	Objective function	-1.018

Optimization results - Flux distribution -

On-Off method

Torque average (Nm)	5.280
Torque ripple	0.184
Objective function	-0.806

On-Off + Level Set method Torque average (Nm) 5.309

Torque ripple

Objective function

0.112

-1.018

Optimization results - Flux distribution -

Non Flux Barrier

Flux Barrier

29

Due to the flux barriers, magnetic flux goes to the rotor surface.

30

Numerical example 2 - Magnetic shield -

- The present method is applied to magnetic shield model shown in figure.
- The purpose of this optimization is to minimize the flux density in Evaluated region and core volume created in design region.

Numerical example 2 - Magnetic shield -

- The present method is applied to magnetic shield model shown in figure.
- The purpose of this optimization is to minimize the flux density in Evaluated region and core volume created in design region.

Magnetic shield - Optimization parameter -

Number of elements in design region	2,488
Number of elements in analysis region	5,052
Generation of global search (μ GA)	200
Generation of local search (Level Set)	200
Weighting coefficient : W_M	0.2

✓ Computational time : 2[h]
 ✓ Number of unknown in FE analysis : about
 Computational environment
 • CPU : Xeon X5660(6-Core 2.8GHz, 6×256KB+12MB, 1333MHz) × 2
 • Main memory : 12GByte

32

Local search

Magnetic shield ($W_M = 0.4$)

On-Off method

		method	
$ \boldsymbol{B} _{average}/10^{-5}$	0.0727	$ \boldsymbol{B} _{average}/10^{-5}$	0.0541
Volume of the core (cm ²)	5.864	Volume of the core (cm ²)	6.016
Objective function	0.121	Objective function	0.116

On-Off + Level Set

Magnetic shield - Consideration of Branch

Non protuberance A protuberance

 Due to protuberance occurs from out shield, flux goes to outside of the shield.

39

Conclusions

- we present a new topology optimization method which based on the on-off and level set methods.
- In order to test this method, it is applied to numerical examples.
- The results show the present method can effectively find optimal solution which have better performances.

Future works

- Applied to the 3-dimentional problems and other devices
- Introduce the multi-objective GA

